Ruchome średnie tło model


Uwaga techniczna: Moving Average Model Od czasu do czasu otrzymujemy prośby o kwestie techniczne dotyczące modelowania ARMA i poza nasze regularne wsparcie NumXL, które bardziej przybliża matematyczny formułowanie ARiMR. Zawsze chętnie pomożemy naszym użytkownikom o dowolne pytania, dlatego zdecydowaliśmy się podzielić się ze sobą swoimi wewnętrznymi notatkami technicznymi. Te uwagi były pierwotnie skomponowane, kiedy siedzieliśmy w klasie analizy czasu. Z biegiem lat, utrzymywaliśmy te notatki z nowymi przeżyciami, obserwacjami empirycznymi i intuicjami. Często wracamy do tych notatek, aby rozwiązać problemy związane z rozwojem i odpowiednio poruszyć kwestię pomocy technicznej. W tym dokumencie przejdźmy do prostego, a jednocześnie podstawowego modelu ekonometrycznego: średniej ruchomej. Ten model stanowi podstawę całej poważnej dyskusji na temat modeli ARMAARIMA i. Tło Ruchome średni model rzędu q (tj. MA (q)) definiuje się następująco: wariancja bezwarunkowa (tj. Długa) jest definiowana w następujący sposób: W przypadku skończonej q proces jest stabilny (tzn. Nie zbiegają się do nieskończoności). Dla nieskończonego porządku (tj.) Proces jest stabilny tylko wtedy, gdy wariant długookresowy jest skończony: Innymi słowy, suma kwadratów wartości współczynników MA jest skończona. Biorąc pod uwagę dane próbki wejściowej. możemy obliczyć wartości średniej ruchomej dla przyszłych wartości (tj. poza próbą) w następujący sposób: Wyprowadzenie wartości współczynników MA jest procesem iteracyjnym i prostym, który pozwoli nam uniknąć przeprowadzania kompleksowego podzbioru wielomianów. Teraz możesz się zastanawiać, dlaczego chcielibyśmy przekształcić proces ARM z ograniczonym rozkazem w reprezentację MA bez końca. Dla początkujących, prognozowanie (średnia i błąd) przy użyciu reprezentacji MA jest znacznie łatwiejsze niż użycie oryginalnej reprezentacji ARMA wyższego rzędu. 2. Integracja Integracji (tj. Jednostka podstawowa) często pojawia się w szeregach czasowych (np. Chodzenie losowe, ARIMA itp.). W takich sytuacjach modelujemy zróżnicowane szeregy czasowe za pomocą modelu klasy ARMA: ale jak wziąć wyjścia ARMA z powrotem do skali niezróżnicowanej Przykład 1: Zanalizowanie integracji pierwszego rzędu procesu MA (q): 2.1 Przeprowadzka Średnia Modele (modele MA) Modele serii czasowej znane jako modele ARIMA mogą zawierać określenia autoregresywne i średnie ruchome. W pierwszym tygodniu dowiedzieliśmy się, że termin autoregresji w modelu szeregów czasowych dla zmiennej x t jest opóźnioną wartością x t. Na przykład terminem autoregresji 1 opóźnienia jest x t-1 (pomnożony przez współczynnik). Ta lekcja definiuje ruchome średnie terminy. Ruchoma średnia wersja w modelu szeregów czasowych jest błędem w przeszłości pomnożonym przez współczynnik. Niech (przewyższa N (0, sigma2w)), co oznacza, że ​​w t są identycznie, niezależnie rozdzielane, każdy z normalnym rozkładem mającym średnią 0 i tę samą wariancję. Średni model średniej ruchomej, oznaczony symbolem MA (1) to (xt mu wt atta1w) Średni model ruchu średniego rzędu, oznaczony symbolem MA (2) to (xt mu wt atta1w theta2w) , oznaczone literą MA (q) jest (xt mc i k ta2t w kropki tetaqw) Uwaga. Wiele podręczników i programów definiuje model z negatywnymi znakami przed terminami. To nie zmienia ogólnych teoretycznych właściwości modelu, chociaż odwraca znaki algebraiczne oszacowanych wartości współczynników i (niezakłóconych) w formułach ACF i wariancji. Musisz sprawdzić oprogramowanie w celu sprawdzenia, czy użyto negatywnych lub pozytywnych oznaczeń w celu poprawnego zapisania szacowanego modelu. R używa pozytywnych oznaczeń w swoim modelu bazowym, tak jak tutaj. Właściwości teoretyczne serii czasowej z modelem MA (1) Należy pamiętać, że jedyną niższą wartością w teoretycznym ACF jest opóźnienie 1. Wszystkie inne autokorelacje wynoszą 0. Tak więc próbka ACF o znacznej autokorelacji tylko w punkcie 1 jest wskaźnikiem możliwego modelu MA (1). Dla zainteresowanych studentów, dowody dotyczące tych właściwości stanowią załącznik do niniejszego materiału informacyjnego. Przykład 1 Załóżmy, że model MA (1) wynosi x t 10 w t .7 w t-1. gdzie (nadwrażliwość N (0,1)). Współczynnik 1 0,7. Teoretyczny ACF podano w poniższym wykresie ACF. Przedstawiona fabuła jest teoretycznym ACF dla MA (1) z 1 0,7. W praktyce próbka zazwyczaj nie dostarcza tak wyraźnego wzorca. Używając R, symulujemy 100 wartości próbek przy użyciu modelu x t 10 w t .7 w t-1, gdzie w t iid N (0,1). W tej symulacji powstaje ciąg szeregowy danych przykładowych. Nie możemy wiele powiedzieć z tej fabuły. Poniżej znajduje się próbka ACF dla danych symulowanych. Widzimy skok w punkcie 1, a następnie ogólnie wartości nieistotne dla opóźnień 1. Pamiętaj, że próbka ACF nie jest zgodna z teoretycznym wzorem MA (1) leżącego u podstawy, co oznacza, że ​​wszystkie autokorelacje w przypadku opóźnień 1 będą 0 Inna próbka miałaby nieco inną próbkę ACF pokazaną poniżej, ale najprawdopodobniej miałyby takie same cechy. Właściwości terapeutyczne serii czasowej z modelem MA (2) Dla modelu MA (2), właściwości teoretyczne są następujące: Należy zauważyć, że jedynymi wartościami niezonarnymi w teoretycznym ACF są opóźnienia 1 i 2. Autokorelacje dla wyższych opóźnień to 0 Więc próba ACF o znacznych autokorelacjach w przypadku opóźnień 1 i 2, ale nieistotne autokorelacje dla wyższych opóźnień wskazują na możliwy model MA (2). iid N (0,1). Współczynniki wynoszą 1 0,5 i 2 0,3. Ponieważ jest to MA (2), teoretyczny ACF będzie miał wartości inne niż z opóźnieniami 1 i 2. Wartości dwóch niezerowych autokorelacji to wykres A teoretycznej ACF. Jak prawie zawsze jest tak, dane próbki nie zachowują się tak doskonale jak teoria. Symulujemy n 150 wartości próbek dla modelu x t 10 w t .5 w t-1 .3 w t-2. gdzie w t iid N (0,1). Sporządza się szeregowy szereg danych. Podobnie jak w przypadku szeregów czasowych dla danych próbki MA (1), niewiele można powiedzieć o tym. Poniżej znajduje się próbka ACF dla danych symulowanych. Wzór jest typowy dla sytuacji, gdy model MA (2) może być użyteczny. Istnieją dwa statystycznie istotne skoki przy opóźnieniach 1 i 2, po których następują nieistotne wartości dla innych opóźnień. Zauważ, że z powodu błędu pobierania próbek próbka ACF nie pasowała dokładnie do teoretycznego wzoru. ACF dla modeli MA (q) Modeli Ogólną cechą modeli MA (q) jest to, że dla wszystkich pierwszych opóźnień q i autokorelacji 0 dla wszystkich luków gtq istnieją autokorelacje nie zerowe. Niepowtarzalność połączenia pomiędzy wartościami 1 i (rho1) w modelu MA (1). W modelu MA (1) dla dowolnej wartości 1. odwrotny 1 1 daje taką samą wartość jak dla przykładu, użyj 0,5 dla 1. a następnie użyj 1 (0.5) 2 dla 1. Otrzymasz (rho1) 0,4 w obu przypadkach. Aby zaspokoić teoretyczne ograniczenie zwane "invertibility". ograniczamy modele MA (1) do wartości z wartością bezwzględną mniejszą niż 1. W podanym przykładzie, 1 0,5 będzie dopuszczalną wartością parametru, podczas gdy 1 10,5 2 nie będzie. Odwrotność modeli MA Model macierzowy jest odwracalny, jeśli jest on algebraiczny, odpowiadający modelowi zbiegającemu się z nieskończonym modelem AR. Zbiegając się, rozumiemy, że współczynniki AR zmniejszają się do 0, gdy wracamy w czasie. Inwersja to ograniczenie zaprogramowane w oprogramowanie serii czasowej służące do oszacowania współczynników modeli z hasłami. To nie coś, co sprawdzamy w analizie danych. Dodatkowe informacje o ograniczeniu inwersji dla modeli MA (1) podano w dodatku. Uwagi dotyczące teorii zaawansowanej. W modelu MA (q) z określonym ACF jest tylko jeden model odwracalny. Warunkiem koniecznym do odwrócenia jest fakt, że współczynniki mają takie wartości, że równanie 1- 1 y-. - q y q 0 ma rozwiązania dla y, które leżą poza okręgiem jednostkowym. R dla przykładów W przykładzie 1 wykreślono teoretyczny ACF modelu x t 10 w t. 7w t-1. a następnie symulowane n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla danych symulowanych. Polecenia R służące do sporządzenia teoretycznej ACF to: acfma1ARMAacf (mac (0.7), lag. max10) 10 opóźnień ACF dla MA (1) z theta1 0,7 lags0: 10 tworzy zmienną o nazwie opóźnienia w zakresie od 0 do 10 (h0) dodaje osi poziomej do wykresu Pierwsze polecenie określa ACF i zapisuje je w obiekcie (np. o nazwie acfma1 (nasz wybór nazwy). Polecenie wydruku (trzecie polecenie) powoduje błędy w porównaniu do wartości ACF dla opóźnień 1 do 10. Parametr ylab etykietuje na osi y, a główny parametr umieszcza tytuł na wykresie. Aby zobaczyć wartości liczbowe ACF, użyj komendy acfma1. Symulacje i wykresy zostały wykonane za pomocą następujących poleceń. xcarc. sim (n150, lista (mac (0.7))) Symuluje n 150 wartości z MA (1) xxc10 dodaje 10 do średniej 10. Domyślnie domyślne symulacje to 0. wykres (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF dla symulowanych danych próbki) W przykładzie 2 wymyśliliśmy teoretyczny ACF modelu xt 10 wt5 w t-1 .3 w t-2. a następnie symulowane n 150 wartości z tego modelu i wykreślono szereg próbkowania i próbkę ACF dla danych symulowanych. Stosowane komendy R to acfma2ARMAacf (mac (0.5.0.3), lag. max10) acfma2 lags0: 10 (lags, acfma2, xlimc (1,10), ylabr, typh, główny ACF dla MA (2) z theta1 0,5, (x, x, x, x, x, x, x, x, x, x, x, y) mainACF dla symulowanych danych MA (2)) Dodatek: Dowód właściwości MA (1) Dla zainteresowanych studentów są dowody na teoretyczne właściwości modelu MA (1). Variance: (text (xt) text (mu wt theta1 w) tekst 0 (wt) tekst (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Kiedy h 1, poprzedni wyrażenie 1 w 2. W przypadku dowolnego h2, poprzednie wyrażenie 0 Powodem jest to, że z definicji niezależności wag. E (w k w j) 0 dla dowolnej kj. Ponadto, ponieważ w t oznaczają 0, E (wjwj) E (wj2) w2. W serii czasów Zastosuj ten wynik, aby uzyskać ACF podany powyżej. Inwersyjny model MA to taki, który można zapisać jako model AR nieskończonego zamówienia, który zbiega się tak, że współczynniki AR zbiegają się do 0, gdy poruszamy się nieskończenie wstecz w czasie. Dobrze wykazać inwersję modelu MA (1). Następnie zastępujemy relację (2) dla t-1 w równaniu (1) (3) (zt wt theta1 (z-taleta) wt theta1z-tal2w) W czasie t-2. (2) staje się zastępującym związek (4) dla t-2 w równaniu (3) (zt wt theta1 z - theta21w wt theta1z - eta21 (zteta1w) wt theta1z - eta12z theta31w) Gdybyśmy kontynuowali ( nieskończoność) dostaniemy model nieskończonej AR (zt wt theta1 z - theta21z theta31z-theta41z kropki) Zauważ jednak, że jeśli 1 1, współczynniki mnożące opóźnienia z będą wzrastać (nieskończenie) w rozmiarze, kiedy wracamy czas. Aby temu zapobiec, potrzebujemy 1 lt1. Jest to warunek odwracalnego modelu MA (1). Model nieskoordynowanych zamówień MA W trzecim tygodniu widzimy, że model AR (1) można przekształcić w model MA nieskończonego rzędu: (xt - mu wt phi1w phi21w kropki phik1 w kropkach sumy fij1w) To sumowanie przeszłych hałasu białego jest znane jako przyczynę reprezentacji AR (1). Innymi słowy, x t jest specjalnym rodzajem magistra z nieskończoną liczbą terminów z czasem. Nazywa się to nieskończoną kolejnością MA lub MA (). Kończy się rozkazem MA jest nieskończona kolejność AR, a dowolny porządek AR jest rzędem nieskończonym rzędu. Przypomnijmy sobie w tygodniu 1, zauważyliśmy, że wymóg stacjonarnego AR (1) polega na tym, że 1 lt1. Pozwala obliczyć Var (xt) używając reprezentacji przyczynowej. W ostatnim kroku używa się podstawowych faktów dotyczących serii geometrycznych, które wymagają (phi1lt1), w przeciwnym razie serie rozbieżności. Nawigacja8.4 Ruchome modele średnie Zamiast używać przeszłych wartości zmiennej prognozowanej w regresji, model średniej ruchomości wykorzystuje poprzednie błędy prognozy w modelu regresji. y c t etta etta k etta, gdzie et jest białym szumem. Odnoszę się do tego jako model typu MA (q). Oczywiście nie obserwujemy wartości et, więc nie jest to regresja w zwykłym sensie. Zauważ, że każda wartość yt może być traktowana jako ważona średnia ruchoma ostatnich kilku błędów prognozy. Nie należy jednak mylić średnich ruchomej z ruchomej wygładzonej średniej, o której mówiliśmy w rozdziale 6. W celu oszacowania cyklu trendu wcześniejszych wartości wykorzystywany jest średnioroczny model prognozowania przyszłych wartości, podczas gdy ruchome średnie wygładzenie jest używane do szacowania cyklu trendu ostatnich wartości. Rysunek 8.6: Dwa przykłady danych z ruchomych średnich modeli o różnych parametrach. Lewo: MA (1) z y t 20e t 0.8e t-1. Po prawej: MA (2) z y t e t e t-1 0,8e t-2. W obu przypadkach, e t jest normalnie rozproszonym białym hałasem ze średnią zerem i wariancją. Rysunek 8.6 przedstawia niektóre dane z modelu MA (1) i modelu MA (2). Zmiana parametrów theta1, kropki, thetaq powodują, że różne wzorce serii czasowych. Podobnie jak w modelach autoregresywnych, wariancja warunku błędów et zmieni tylko skalę serii, a nie wzorców. Możliwe jest pisanie dowolnego stacjonarnego modelu AR (p) jako modelu MA (infty). Na przykład, używając powtórzonej podstawy, możemy to udowodnić za model AR (1): rozpocznij yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 i et phi fiordy phi12e phi1 i koniec amptext Pod warunkiem -1 lt phi1 lt 1, wartość phi1k będzie mniejsza, gdy k powiększy się. Więc ostatecznie otrzymujemy yt et phi1 e phi12 e phi13 e cdots, proces MA (infty). Wynik odwrotny utrzymuje się, jeśli wprowadzamy pewne ograniczenia parametrów MA. Następnie model MA nazywa się odwracalnym. Oznacza to, że możemy pisać dowolny proces odwracalny MA (q) jako proces AR (infty). Modele odwracalne nie tylko umożliwiają nam konwersję z modeli MA na modele AR. Mają także pewne właściwości matematyczne, które ułatwiają ich stosowanie w praktyce. Ograniczenia inwersji są podobne do ograniczeń stacjonarnych. Dla modelu MA (1): -1lttheta1lt1. Dla modelu MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1 - eta2l1. Bardziej skomplikowane warunki zachowują się dla qge3. Znowu R zajmuje się tymi ograniczeniami podczas szacowania modeli. Usuwanie danych eliminuje przypadkową odmianę i pokazuje trendy i elementy cykliczne W kolekcji danych pobranych w czasie jest pewna forma losowej odmian. Istnieją metody zmniejszania anulowania efektu z powodu zmienności losowej. Wygładza się często stosowana w przemyśle technika. Technika ta, stosowana we właściwy sposób, ujawnia bardziej wyraźny trend, elementy sezonowe i cykliczne. Istnieją dwie odrębne grupy sposobów wygładzania Metody uśredniające Metody wygładzania wykładniczego Pobieranie średnich jest najprostszym sposobem na wygładzanie danych Najpierw zbadamy niektóre uśrednione metody, takie jak zwykła średnia wszystkich poprzednich danych. Kierownik magazynu chce wiedzieć, ile typowy dostawca dostarcza w jednostkach 1000 dolarów. Heshe pobiera próbę z 12 dostawców, losowo, uzyskując następujące wyniki: średnia obliczona lub średnia danych 10. Kierownik decyduje się na wykorzystanie tego jako preliminarza wydatków typowego dostawcy. Czy jest to dobry lub złe oszacowanie Mean squared error jest sposobem na to, aby ocenić, jak dobry model jest Obliczamy średnie kwadratowe błędy. Błąd prawdziwej kwoty wydanej minus szacowana kwota. Błękitny kwadrat jest błędem powyżej, wyrównany. SSE jest sumą kwadratowych błędów. MSE jest średnią z kwadratów błędów. Wyniki MSE Na przykład Wyniki są następujące: Błędy błędów i kwadratów Szacunek 10 Powstaje pytanie: czy możemy użyć średniego do przewidywanego przychodu, jeśli podejrzewamy, że trend A na wykresie poniżej widać wyraźnie, że nie powinniśmy tego robić. Średnia waży wszystkie dotychczasowe obserwacje Podsumowując, stwierdzamy, że zwykła średnia lub średnia wszystkich wcześniejszych obserwacji jest tylko użytecznym oszacowaniem prognozowania, gdy nie ma żadnych trendów. Jeśli istnieją trendy, użyj różnych szacunków, które uwzględniają trend. Średnia waży wszystkie obserwacje w równym stopniu. Na przykład średnia z wartości 3, 4, 5 wynosi 4. Oczywiście wiemy, że średnia jest obliczana poprzez dodanie wszystkich wartości i podzielenie sumy przez liczbę wartości. Innym sposobem obliczania średniej jest dodanie każdej wartości podzielonej przez liczbę wartości, czyli 33 43 53 1 1.3333 1.6667 4. Mnożnik 13 nazywa się wagą. Ogólnie: bar frac suma w lewo (w prawo frac) x1 w lewo (frac w prawo) x2,. ,, w lewo (w prawo frac) xn. (Lewy (prawy frak)) to ciężary i oczywiście sumują się do 1.

Comments

Popular Posts